If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900x^2+50090x-2000=0
a = 900; b = 50090; c = -2000;
Δ = b2-4ac
Δ = 500902-4·900·(-2000)
Δ = 2516208100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2516208100}=\sqrt{100*25162081}=\sqrt{100}*\sqrt{25162081}=10\sqrt{25162081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50090)-10\sqrt{25162081}}{2*900}=\frac{-50090-10\sqrt{25162081}}{1800} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50090)+10\sqrt{25162081}}{2*900}=\frac{-50090+10\sqrt{25162081}}{1800} $
| 1x^2=-2x+48 | | Y=4x-28.Y=1.5-18 | | 25r+4=8 | | 1/2(4x−5)=−3x+4. | | 5w-28=37 | | (-6,1);m=6 | | 7+5d=88 | | 3x-5(2x-12)=37 | | 21.2=-0.3x^2-5.4x+38 | | 3f+(‐1=-13 | | 10^b=0 | | 3f+‐1=-13 | | 88=8(p+5) | | 2/5=160/x | | x−21=25 | | -4+3r=41 | | x=77-3x/8 | | 6=-3n+6n | | 300=(10.5)(13)(x) | | 5(6x+4)=3x+2 | | x−21 =25 | | 85+6x-5=180 | | 5/2=x/160 | | 10(x+1)=5(2x)+2 | | 3x−5(2x−12)=137 | | (x+3)=(5x+9)=(6x) | | x+(1.5)=4 | | 3x-0.6=12.27 | | 6(2x+6)=4(9+5x) | | 5x+1.5=55x-0.5 | | -101=3x+2(5x-5) | | -3b+2-4b=2b-21+6 |